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The Fermi-contact interaction (FCI) can easily be derived from 1st order 
perturbation theory applied to the non-relativistic wave equation for a spin- 
(1/2) particle of L6vy-Leblond, with the nuclear spin described by the field 
of  an "external"  magnetic dipole, and it results from the fact that the "turn- 
over-rule" for the operator  ~/~ is only valid if the derivatives implicit in fi are 
taken "in the distribution sense". I f  one avoids to apply the turn-over-rule, 
the FCI  is obtained without the need to introduce a "8-funct ion".  It  is also 
shown that the formulation of a magnetic point dipole as the limit of an 
extended nucleus directly leads to the FCI. Traditional methods of the deriva- 
tion of  the FCI are analyzed in the light of  this new interpretation. It is then 
explained why the perturbation expansions in powers of the magnetic moment  
of  the nucleus necessarily diverges, but that the expression for the 1st order 
energy on which the concept of the FCI  is based, can nevertheless be justified 
by means of the Hel lmann-Feynman theorem with a correction term if singular 
wave functions are involved. Finally some comments on a theory beyond first 
order are made. 

Key words: Fermi contact interaction - -  L~vy-Leblond equation - -  Hyperfine 
interaction - -  Hel lmann-Feynman theorem - -  Perturbation theory 

I. Introduction 

I f  one wants to formulate a Hamiltonian at the two-component  spinor level (Pauli 
Hamiltonian) for an electron in the magnetic field of the point nucleus, one is 
obliged to include a term which involves a 8-function, that is usually called the 
"Fermi-contact  interaction", (FCI).  

* Dedicated to Professor J. Kouteck~ on the occasion of his 65th birthday 
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In his original derivation Fermi [1, 2] has started from the Dirac equation for a 
one-electron atom in an s-state. Taking the non-relativistic limit at the end he 
arrived at an expression for the hyperfine splitting in terms of the non-relativistic 
wave function. Much later [3] this expression has been interpreted as the expecta- 
tion value of  a 8-function term, that we shall refer to here as FCI. There is no 
8-function term for the same physical situation in the Dirac equation, i.e. if  one 
describes the electron relativistically in terms of four-component spinors. Since 
the FCI can be "derived" from the Dirac equation via its reduction to Pauli 
form, it has often been interpreted as a "relativistic effect", like other terms that 
arise via this reduction, like spin-orbit coupling or the Darwin term. 

After Fermi's discovery, other authors [4, 5] showed tht the FCI can also be 
understood in a purely classical framework, provided that one associates ad hoc 
an intrinsic point dipole with the electron. It thus appeared that just the magnetic 
moment of the electron had a relativistic origin, but that the interaction of the 
magnetic moment of the electron with that of  the nucleus could be understood 
classically. 

A genuinely relativistic treatment of  the hyperfine interaction was given by Breit 
[6] (see also [7]), which in the non-relativistic reduces to that of  Fermi [1]. 

Many textbooks (see e.g. [8, 9]) adopt the point of view that the FCI is a relativistic 
effect, which must be derived from the Dirac equation. A very popular  derivation 
is that due to Blinder [10] (see also [11]). In other textbooks or review articles 
(see, e.g. [12-17]) it is stressed that the FCI is not a relativistic effect and that it 
can be understood in terms of  classical electrodynamics, provided that one regards 
the electron as a particle with an intrinsic magnetic moment (not worrying about 
the origin of  the gyromagnetic factor g = 2, that is hard to understand classically, 
but which is obvious in terms of  the Dirac theory). In some textbooks both 
derivations of the FCI, the relativistic one and the non-relativistic one are 
presented [18]. 

Irrespective of  whether the relativistic or the non-relativistic derivation of the 
FCI is chosen, the arguments found in textbooks are often to a large extent 
handwaving. In the non-relativistic derivation the essential point (as we shall 
show) is that the field of  the magnetic point dipole must be described by a 
distribution rather than a function, and the field strength is obtained from the 
vector potential via a differentiation in the distribution sense. Instead of a 
convincing justification of  why this must be done so, one finds rather miraculous 
ways towards the 8-function terms, e.g. by manipulating expressions such that 
the familiar relation A(1/ r )=-47r83(~)  can be used, or by intermediate use of 
momentum space, or by taking the electron as the source of the magnetic field 
that acts on the nucleus (see Sect. 4.3). 

Relativistic derivations suffer from the difficulty that the Coulomb potential is 
so singular that the non-relativistic limit is problematic, in particular that the 
Pauli Hamiltonian has awkward properties and can be used safely only in the 
context of  first-order perturbation theory. Moreover the origin of the FCI appears 
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tO be different depending on whether one uses the method of the elimination of 
the small components or the Foldy-Wouthuysen transformation [9]. 

In order to decide whether the FCI is a relativistic or a non-relativistic effect one 
must first understand whether the electron-spin itself has a relativistic or a 
non-relativistic origin. The key to an answer to this question has been given by 
L6vy-Leblond [19] who has shown that the electron spin is perfectly consistent 
with a Galiei-invariant (i.e. non-relativistic) theory. The non-relativistic linear 
field equation in terms of  four-component spinors derived by L6vy-Leblond [19] 
deserves to be better known than it actually is. Among other things it automatically 
accounts of the factor g = 2, as does the Dirac theory. 

As in the Dirac theory, there is no explicit FCI if one describes the electron by 
the L6vy-Leblond equation. We shall show that on reducing the 4-component 
spinor equation to a two-component spinor equation the FCI arises naturally as 
a result of applying the turn-over-rule for the operator ~j6, which is only valid 
"in the distribution sense" if singular functions are involved. Stated more directly, 
the application of the turn-over-rule implies integration by parts. When singular 
functions are involved, the boundary contributions cannot be neglected, and 
these give rise to the FCI. 

The derivation of the FCI from the L6vy-Leblond equation is perfectly straightfor- 
ward and free from the problems that arise in traditional derivations. 

There is, however, a fundamental nontrivial problem that has usually been 
overlooked, namely that the FCI is only meaningful in the context of 1st order 
perturbation theory. The perturbation series in powers of the nuclear magnetic 
moment does not converge and it is not sure whether the L~vy-Leblond equation 
(or the Dirac equation) for an electron in the field of a nucleus with an electronic 
charge and a magnetic point dipole has bound state solutions. We shall show 
that in spite of the divergence of the perturbation series the 1st order energy is 
physically meaningful. This requires a generalization of the Hellmann-Feynman 
theorem to the case where singular wave functions are involved. 

The main conclusions of this paper are: 

(a) The hyperfine interaction of the electron spin with the magnetic field of the 
nucleus is, like the very concept of the electron spin and of  the interaction of 
electron spin with other external magnetic fields, not a relativistic effect. It can 
(to the leading order) be described correctly by the Galilei-invariant four- 
component spinor theory of L~vy-Leblond [19]. The usual derivations from 
relativistic theory burden a rather simple theory with unnecessary problems. 

(b) The "Fermi-contact interaction" (FCI), a 6- function-term, in the Hamiltonian 
is neither present in the Dirac theory nor in the Levy-Leblond theory and arises 
as an artifact if one wants to describe the hyperfine interaction by first order 
perturbation theory in terms of two-component spinors (i.e. in a Schr6dinger-Pauli 
like formulation). It arises then naturally from a rearrangement of  the exact 
expressions (that don't  contain 6-function) via integration by parts. 
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(C) An alternotive phrasing of the same statement is that, when singular functions 
are involved the "turn-over-rule" for hermitean operators only holds if the 
differentiations implicit in these operators are taken in the distribution sense. 
Not only the charge distribution and the field strength but also the vector potential 
must be interpreted as distributions, but it happens that the vector potential does 
not contain any 8-term and can hence be treated as if it were a function. 

(d) The correct theory is fully consistent with the picture that the magnetic field 
of the point nucleus must be taken as the limit to radius zero of  an extended 
nucleus. This limit must be taken in the "distribution sense". 

(e) The perturbation theory in powers of  the magnetic moment of  the nucleus 
does not converge. The field of a magnetic point dipole is so singular that the 
wave function has an essential singularity at r = 0 and an expansion of the wave 
function in powers of the field strength does not exist. The "naive" expression 
of  first-order perturbation theory can nevertheless be justified via the Hellman- 
Feynman theorem which, however, needs a modification for singular perturba- 
tions. It is not excluded that the perturbation series of the energy is at least 
asymptotic, and that the series may even converge for a nucleus of finite size. 

(f) The popular  derivation of the FCI by Blinder [ 10, 11 ] though formally correct, 
possibly suggests an incorrect picture of  the origin of the FCI. 

On the operator level the hyperfine interaction is a one-electron effect. We only 
discuss this level. It is well-known that for the actual values in many-electron 
systems, many-body effects play a large role (see, e.g. [20]). 

2. A non-relativistic spin(I/2) particle in an external magnetic field: 
the first order corrections to the energy 

A non-relativistic electron in an electric field with potential V in the absence of 
a magnetic field is described by the L6vy-Leblond equation [19] (for its relation 
to the Dirac and Schr6dinger-Pauli equations see Appendix A) 

Ho4'o = EoS4'o (2.1) 

v ~ f  �9 S =  " 4 '~ 2o /- /~ ~ - 2 m  ' 

4'o is a 4-component spinor, /4o and S are 4 x 4 matrices, given in (2.2) in terms 
of 2 x 2 blocks with ~ = (crx, %,  o'z) the vector of the three Pauli matrices. The 
first two components of  4'o are the 2-component spinor q~o, referred to as "large 
component",  while the 2-component spinor ,fo is referred to as "small com- 
ponent".  This convention is reminiscent of that current in the relativistic theory 
although I,fo] is not significantly smaller than [q~01 (,fo is the non-relativistic limit 
of the CXo of the Dirac theory, see Appendix A). Eq. (2.1, 2) can be rewritten as 

o-p 
)~o = ~mm q~o; ( V +  r)q~o = Eo~oo (2.3) 

where V+ T is the usual non-relativistic Hamiltonian. 
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We introduce an external magnetic field as a perturbation. According to the 
principle of minimal coupling we have to replace ~ in (2.2) by 

~r= f i - e  ~ =  f i - e A  ' (2.4) 
c 

where .4 (or ,4') is the vector potential of the external field (depending on the 
system of units used). 

We shall use the Gaussian system of units in which ,~ appears multiplied by c -~. 
Nevertheless one must keep in mind that the factor c -1 has not to be regarded 
as expansion parameter and does not imply that the interaction of a particle with 
an external field is a relativistic effect that vanishes in the non-relativistic limit 
(n.r.1.). In order to understand this problem one must realize that in taking the 
non-relativistic limit (n.r.1.) of quantum mechanics (see Appendix A) one must 
also take the n.r.1, of electrodynamics (which implies the incorporation of certain 
c -1 factors into the definition of electrodynamic quantities [19]). 

From (2.4) we are led to the perturbing operator. 

�9 

We postpone a discussion on whether the application of perturbation theory is 
justified, to Sect. 5. The formal expression of the 1st order perturbation correction 
to the energy eigenvalues is 

E, = ( ,ko[ H'16o) / ( 6oI Sl Oo). (2.6) 

We normalize 0 so that the denominator in (2.6) is equal to 1 and insert (2.3) 
and (2.5) 

e ~ ~ 

E1 = - {(o'pr [dAq@ + (r (Po)}. 
2me 

(2.7) 

So far the result is exact (in the framework of perturbation theory). One can use 
the "turnover-rule" for ~/~ and get 

e 
E , -  2mc<q~ol[~/~, &~]+[~o> (2.8) 

which is straightforward if A, is regular at the origin, and which is still valid for 
singular A if the derivative implicit in i6 is taken in the distribution sense (see 
Appendix B). Keeping this in mind (2.8) can be rewritten as 

e 
E1 = -2~mc {qol/~A + -4/J + iff(i6 x ,4) + i ~ ( d  x/~)l r (2.9) 

Introducing the magnetic field strength/3 and the Coulomb gauge 

rot A = / J ;  d i v A = 0  (2.10) 
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we get the traditional result 

e ~ eh  
E, = - - - ( r  r Tmcmc (r aBI r mc 

For the special case of a homogeneous field with 

an alternative form of E1 is 

e eh 
E1 - 2mc(r x 7). ,51r162162 

(2.11) 

(2.12) 

_ e (r 2~)1r (2.13) 
2mc 

For the field created by the spin of a nucleus with magnetic moment/2 the vector 
potential 

r3 (2.14) 

is singular at the origin, but the integrals needed in (2.7) exist, as we shall see 
directly in Sect. 3.1. If  we want to apply the "turn over rule" and switch to an 
expression like (2.9), we must take the derivative, implicit in (2.10), in the 
"distribution sense" (see Appendix B). This means that /3  = rot fi~ consists now 
of two terms,/~y in which the derivatives are taken in the usual function sense 
(which is meaningful only for r # 0), a n d a n  extra term/~ 

/~f = rotf . (f i~ P) 1 . 1 -~vx(~ xf)-(~x ~)xv 7 

_ _ ~ +  3 (fi___fi) f (2.15) 
- -  r 3 r 5 

= • +  b; b = - ( f i x  7) x v 6 ( r )  = I~- -~- -  7-c~6(r). (2.16) 

The extra term 6 gives rise to two contributions in (2.11), of which the first 5ff  ~ 
transforms as an irreducible tensor of rank 0 and the second one 5/~ (2) as an 
irreducible tensor of rank 2, i.e. 5ff  ~ is spherically symmetric, 5/~ (~) transforms 
like 5/~ (see, e.g. [9]) 

2 ~ 1 ~ 
- ~-c-~46(r ). (2.17) /~=/~(o) +/~(2); 6(0)= ~ ~22 6(r); if2)= 3 ~22 6 ( r ) -  1~7r 

One then gets 

E1 = - r r - (r + fro)+ ff2))[r 

For s-states only 8ff  ~ contributes, hence 

(2.18) 

(2.19) 
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This is the Fermi-contact interaction. Of course, /~(2) also contains a 8(r) factor. 
However, ~- 6 (2) only contributes if ~0 has components with the (local) angular 
momentum quantum number l greater than zero, and these components vanish 
at r = 0. The term b (2) does not contribute to E~ and can be ignored. However, 
as pointed out by Moss and Watson [21] (see also [22]), this term is needed if 
one wants to go to higher orders in perturbation theory ~. 

3. Evaluation of  the first-order correction to the energy without explicit use of  
the Fermi-contact operator 

3.1. Direct use of the Eq. (2.7) 
Although the derivation given in the last section is perfectly rigorous (provided 
that 1st order perturbation theory is justified), one may want a derivation of the 
FCI, in which the concept of distributions, and hence of 8-functions is not needed 
at all. We do this in evaluating E1 from the exact expression (2.7) for an atomic 
one-electron s-state wave functions q~0- This derivation needs some familiarity 
with the handling of Pauli matrices and of the normalized eigenfunctions 
~ ( O ,  q~, s) of angular and spin variables (see, e.g. [23]) which is not necessary 
for the alternative derivation in Sect. 3.2. We take an atomic sl/2 state (with the 
quantum number K = - 1 )  

~o = g(r)~Tm-l( O, q~, S) (3 .1)  

~p~o= _ih~_~_f Oq~o 6-~ Og ,,,. 0-7 = -ih 7 ~-~T ~_l(~)q , ~ ,  S)  = ih~rf~( O, ~o, s) (3.2) 
or 

with ~7_~1(O, q~, s) a normalized function of angular and spin coordinates for the 
quantum numbers K = -1  and m = m,. From (2.7) and (3.2) one gets 

-eh f o  [ 6"F Og ~(l~ x ~) ] r2 drl~q~_ll2 7 r3 g (3.3) El = ~cmc Or' + 
where do) implies integration over angular and spin variables. Since Og/Or com- 
mutes with the other factors in the integral we can rearrange (3.3) to 

E1 = -ehmc Re j ~  -~i OTg(6..or ~)(~" [t~ x ~])gr 2 dr] ~7 _m~] 2 do) 

= Io ~  
-eh Re [12 x ( f i x  ~)]}g dr[~ ~112 dw. (3.4) 7" r o r  

A referee whose report arrived after revision of  the manuscript has pointed out that instead of 
the L6vy-Leblond equation one might use the 2nd order equation on two-component spinor level 

{(a~)2/(2m) + v}~ = E~ (,) 

with, in the presence of  an external magnetic field,/~ replaced by ~. Straightforward application of 
1st order perturbation theory leads then directly to Eq. (2.8) with no "turn-over-rule" involved. This 
is so only at first glance. In view of the discussion in Sects. 5.2 and 5.4, taking care of the singularity 
of the external magnetic field and the fact that the Hamiltonian (*) is of 2nd order (unlike the LL 
Hamiltonian) a correction term to E~ arises, which results from the non-validity of  the turn-over-rule 
in deriving the Hellman-Feynman expression of EI ,  and this is just the FCI. So there is no way to 
avoid boundary term corrections to the turn-over-rule unless one decides to define derivations in the 
distribution sense (which is equivalent to taking care of  these boundary terms) 
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The first term in the parenthesis vanishes and the second one consist of an 
irreducible tensor of rank 0 and one of rank 2. Only the former contributes in 
view of (3.1) to E1 hence 

foO  ;e c f 2 e h R e  (6fi)  gdrln~-~12 dto = [ g ( 0 ) ]  2 ~filrlm-ll2 dto (3.5) E1 = 3 mc 

in agreement with (2.19). 

3.2. Use o f  a damping factor corresponding to a finite nucleus 

An alternative derivation consists in multiplying the A of (2.14) by a damping 
factor which makes it regular at the origin, i.e. which describes an extended 
(rather than point) nucleus, e.g. 

= Aq(r); q(r) = 1 - exp ( -b r  2) (3.6) 

with A given by (2.14). One may choose q(r) differently as long as q(r)~-O for 
r close to 0 and q(r) ~ 1 otherwise. 

Then 

/~ = rot .~ = q(r) rot A - . 4  • -~ dq (3.7a) 
r dr 

div,~-- q(r) div,4 f i x  ~ ~dq ~. (3.7b) 
r 4  " rd-- ~ = 

We insert (3.6) into (2.7). Since A is regular everywhere, we can apply the 
turnzover-rule i n t h e  traditional sense to get (2.9) and (2.11) (with A replaced 
by A and /~  by/~).  Using (3.7b) we obtain 

e z eh E1 = -~cc (~olm~l~o)-~-~mc(~oltrq(r) rot fi~[~o) 

+ ~eh (~ola[,~• 7]! ~ ~Oo~. (3.8) 
zme \ I r ar I / 

In the first two terms in (3.8) q(r) appears as a multiplicative factor in the 
integrands. Although the limit for b ~ oo of q(r) is equal to 1 only for r # 0, the 
lmits of the integrals are obtained by taking the limit q(r) = 1 for all r, i.e. by 
omitting the factor q(r). The last term in (3.8) needs special consideration 

2mc 1~~215 71!r dqd'-dr - 2mee---hh i~olZ8" [----~- x 7 2b exp ( - b r  2) d~" 

f ; = - e h  Ig(r)le2br exp ( - b r  2) dr ~fi1~7_'2112 do) 
3me 

(3.9) 

where in the last line of  (3.9) we have inserted (3.1) and taken the spherically 
symmetric part of 02 x 7) x ~ like in (2.16, 17). 
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In the radial integral in (3.9) only r-values close to zero contribute significantly 
if b is large. In fact the error that one makes in replacing g(r) by g(0) is of the 
order b -1/2 [24]. This error vanishes hence in the limit b ~ oo and we get 

;o o lira f dqdr lim Ig(r)122br exp (-br 2) dr = Ig(0)[ 2 b~oo Jo dr 

= [g(0)12{q(oo) - q(0)} = [g(0)l z (3.10) 

such that we retrieve (3.5) which is equivalent to (2.19). 

This derivation uses the concept of  a distribution [25] as the limit of  a sequence 
of regular functions [24] in a most direct way and its physical interpretation is 
that it is justified to idealize an extended dipole by a point dipole, at least in the 
present context. 

4. Analysis of traditional derivations 

We first study Fermi's original derivation, then two popular ones of the FCI from 
relativistic theory and finally conventional non-relativistic approaches. 

4.1. Fermi's original derivation 

Fermi's original papers [1, 2] are not easy to read. Recast into a modern notation 
the essential steps of this derivation are the following ones. Let the 4-component 

(~%) satisfy the Dirac equation spinor ~bo = Xo 

CJ'ff V - E - 2mc 2] Xo 

The perturbation due to the magnetic field is then cH' with H '  given by (2.5), 
and the first order energy is 

E,  = - e {(r ~fi-[Xo) + (Xol &"{I  r (4.2) 

For an atomic s-state one inserts (3.1) for q~o and 

or / "  m 

Xo = if(r)~Ta( O, ~, s) = -if(r)--~7_l( O, ~o, s) (4.3) 
r 

into (4.2). One then gets (3.3) with (h/2mc) Og/Or replaced by f(r). Analogous 
manipulations as in Sect. 3.1 lead to 

4 e f o  I E1 =-~ g(r)f(r) dr ~/2[~/~1[ 2 do). (4.4) 

Since g(r)  and f(r) are only weakly singular, the integrals in (4.4) exist and their 
nonrelativistic limit (n.r.1.) is obtained in terms of the n.r.1, of g(r)  and f(r). 
Noting that in this limit 

h of 
g - (4.5) 

2mc Or 

one immediately arrives at (3.5). 
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This not only shows that Fermi's original derivation is perfectly straightforward, 
but also that it is easily related to a derivation from the L6vy-Leblond equation. 

4.2. Elimination o f  the small component 

Starting from the Dirac equation in the pre~ence of a magnetic field 

cJ"~ V - E - 2mc 2] = 0 (4.6) 

one gets 

{ 1 
X =  k ( r ) 6 ~ o ; k ( r ) =  1 2mc2 j = l + O ( c  -2) (4.7) 

{ V + - ~ m 6 " ~ r k ( r ) 6 " ~ ' } ~ = { V +  (2~)2+ 0(c-2)) ~ = Eq~. (4.8) 

If  in Eq. (4.8) one neglects the term 0(c -2) and inserts (2.4) for 77, one obtains 

~ ~ ie 6 . . ( f i x A + A  q~=Er (4.9) Ho- (~A + A~) -Zinc 

with Ho the unperturbed Schr6dinger operator. Note that the c -1 associated with 
A must not be regarded as expansion parameter. If  one regards the terms linear 
in A as a perturbation, then one gets the same first order perturbation correction 
to the energy (2.11) as derived in Sect. 2 provided that one takes the derivatives 
of A implicit in (4.9) in the distribution sense. 

It is now not so obvious as in Sect. 2 why one should take these derivatives in 
the distribution sense. However, this is seen directly if we start from perturbation 
theory for the Dirac equation (4.6) with (4.1) the unperturbed equation and 
regard the terms linear in fi~ as the perturbation. The first order energy correction 
is then (4.2). 

If  we now insert the leading term in the 1/c  expansion of the small component 
Xo of the unperturbed Dirac equation, namely 

1 1 
Xo = ~m~mc k(r)6"fi~~176 = ~m~mc ~fi~p~ + ~ (4.10) 

we are led immediately to Eq. (2.7) and we can follow the arguments given there. 

The reasoning found in textbooks [8, 9], that goes back to Blinder [10] is, however, 
different. One inserts (4.10) into (4.2), keeping a finite value of c, and applies 
the turn-over-rule to get 

e 
E, [( q~o] @k(r)  ~AI ~o) + (~o] ~fiAk(r) @1 ~o)} (4.11 ) 

2mc 
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where ~oo is solution of the following Schr~dinger equation 

{ V+2~6-~k(r)~}q~o= Eo~o o. (4.12) 

Finally one performs the limit c ~ co. 

One can forget the physical meaning of k(r) and just keep in mind that k(r) ~ 1 
for larger and k(r)~-0 for r close to 0, very much like the damping factor q(r) 
used in Sect. 3.2 to describe the finite extension of the nucleus. In spite of  the 
different functional form dk/dr approaches 26(r) in the limit c ~ oo, like dg/dr 
does in the limit b ~ oc. The merit of either the factor q(r) (for finite b) or k(r) 
(for finite c) is that it regularizes the integrand in (3.8) or (4.11), such that the 
turn-over-rule can be applied without worrying whether this must be done in the 
"function sense" or the "distribution sense". 

I f  one takes the limit c ~ oo before one eliminates the small component  and 
applies the turn-over-rule, i.e. if one uses the Lrvy-Leblond equation as a non- 
relativistic limit of the Dirac equation (see Sect. 2), one must differentiate in the 
distribution sense and one gets directly the FCI. The entire meaning of the factor 
k(r) is that it enables us to obtain in an indirect way the derivatives "in the 
distribution sense". There is not more physics behind it. 

Since the two processes "elimination of the small component"  and "taking the 
limit c -~ ~ "  don' t  commute (due to the fact that the limits r-~ 0 and c ~ ~ don' t  
commute) one is somewhat  lucky that in either order of  the two processes one 
gets the same final result for the FCI. Note,  however, that one obtains the 
conventional SchrBdinger equation as non-relativistic limit of  the Dirac equation 
only if one first let c ~ ~ (see Appendix A) and eliminates X then. In the inverse 
order one gets (4.12), which in the limit c-~ ~ becomes 

Ho+  [tT/~,k(r)]t~i6 q~o = /4o 2m r 

= { H o - ~ 8 ( r ) ~ }  ~o= Eo~o. (4.13) 

4.3. Use of the Foldy-Wouthuysen transformation 

Another popular  method to arrive at the non-relativistic limit of  the Dirac 
Hamil tonian is via the Foldy-Wouthuysen (FW) transformation. In the presence 
of an external electric field this t ransformation cannot be performed in closed 
form. One rather constructs it as an expansion in powers of  c -1, although it is 
known that this expansion does not converge and leads to highly singular 
operators. The term of  0(c ~ is, nevertheless, the correct Schr/Sdinger limit, while 
the term 0(c -2) containing the Pauli-corrections can at least be used in the context 
of  perturbation theory. For our example the FW-transformation is 
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and the transformed Hamiltonian (that acts on two component spinors) 

H = W + D W  - mc 2 = ~m (d7})2+ V+O(c  -z) (4.15) 

agrees with (4.8). One can then follow the argument after (4.8) and arrive at (4.9) 
and finally at-(2.11), if one accepts that derivatives have to be taken in the 
distribution sense, which is rather obvious (see the Appendix C), but which may 
cause problems to those readers who take Blinder's [10] derivation of  the Fermi 
contact term via the k(r )  of  the last subsection 4.2 for granted. 

Therefore the following considerations may be helpful. For a free particle the 
FW transformation is possible in closed form with the result 

n : n/m2c4+ C2(~fi) 2 -  mc 2. (4.16) 

A square root of a differential operator is, a priori, not defined. The only way to 
give a meaning to (4.16) is in momentum space i.e. via a Fourier transformation, 
where/~ becomes a multiplicative operator. However, derivatives that are defined 
via a Fourier transformation, mean necessarily derivatives in the distribution 
sense [24, 25]. 

4.4. Non-relativistic derivations o f  the F C I  

If  we assume that the electron has an intrinsic magnetic moment 

h e ,  
rh = - - o r  (4.17) 

mc 

classical electrodynamics tells us that the energy density of  the interaction of  rfi 
with the magnetic field created by the nuclear magnetic moment /2  is 

rh. /~ = rh. rot ,if, (4.18) 

with .,{ given by (2.14) and the differentiation taken in the distribution sense. On 
averaging (4.18) over the electron distribution for an s-state and using (2.16, 17) 
we immediately arrive at (2.19). 

The justification of why the differentiations must be taken in the distribution 
sense, can be found in Appendix C. This is probably the simplest possible 
"non-relativistic" derivation of  the FCI. Other derivations found in the literature 
are usually harder to understand, especially if the authors had didactic ambitions 
[26-28]. 

Since the essential point in any derivation of  the FCI is to realize that the magnetic 
field/3 created by a point nucleus is a distribution (see Appendix C), the various 
classical derivations can be classified according to how they manage to construct 
/~ as a distribution. 

The direct approach just presented has probably not been used so far. There are 
three main indirect ways 

(a) The expression for /~  is manipulated so that A(r -1) appears, which can via 
Eq. (B.24) (Appendix B) be related to 63(7). 
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This very popular approach [14-18] goes probably back to Casimir [5]. One 
starts, e.g., by writing 

fi, = rot -~ (4.19) 
r 

and gets 

/~ = rot rot A = grad div tz _ a ~  (4.20) 
r 

One then remembers (B.24) (see Appendix B) and arrives so at a g-function as 
in (2.16). One may object to this derivation that (4.19) is only correct in the 
function sense, not in the distribution sense (see eq. (B.17)) and that one gets 
the incorrect impression that (B.24) is the only relation by which one could arrive 
at three-dimensional 6-functions. 

(b) Differentiation of fl~ via a Fourier transformation [13]. This implies directly 
differentiation in the distribution sense, though without referring to the theory 
of distributions it is hard to see why the Fourier transformation method leads to 
the correct result. 

(c) Description of a point nucleus as the limit for R -~ 0 of an extended nucleus. 
A straightforward way would be to proceed in analogy to Sect. 3.2. One would 
directly get (3.8) and one could follow the arguments after (3.8). This simple 
approach has, to the authors' knowledge, not been used in the literature. Instead, 
the nucleus has been described as a sphere with homogeneous magnetic dipole 
density [16, 28] or as a rotating charged sphere [26]. For models of this type the 
argument is somewhat simplified if one inverts the role of electron and nucleus, 
i.e. if one studies the magnetic field created by the electron distribution and its 
interaction with the point nucleus. A quite simple derivation on these lines is 
found in Ramsey's book [26] though it is more pictorial than rigorous (see also 
[12]). If  one divides the space into a sphere around the nucleus (with a radius 
R larger than the size of the nucleus, but small enough such that the electron 
density inside this sphere can be regarded as constant) and the rest, then for an 
s-electron the "rest" does not create any field inside the sphere, only the electron 
distribution within the sphere. This field is homogeneous and proportional to the 
dipole moment density, hence independent of the radius of the sphere, such that 
the limit R-~ 0 can easily be taken. 

5. Theory to higher order in the field strength 

5.1. The formal perturbation expansion 

One can think of higher orders in perturbation theory in two ways: 

(a) higher orders in powers of magnetic field strength/~, or the nuclear magnetic 
moment ~;  

(b) relativistic corrections, Le. higher orders in an expansion in c -1. 
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Since we insist in this paper  on a strictly non-relativistic theory we ignore aspect 
(b). It is possible to "sum (b) to infinite order" at least for one-electron atoms, 
by starting from Dirac wave functions and performing perturbation theory in the 
sense (a) [6, 7]. 

We first discuss the formal perturbation expansion without worrying whether the 
L6vy-Leblond equation in the presence of the field of  a magnetic point dipole 
has bound state solutions and whether the perturbation expansion converges. 
We shall discuss these points and their consequences in Sects. 5.3 and 5.4. 

The higher orders in perturbation theory with the unperturbed Hamiltonian (2.2) 
and the perturbation (2.5) are derived formally in a straightforward way. We 
concentrate our interest on the second order energy. 

E2 = (~ol H'I ~Pl) = - e{('pol ~AI27,) + (27ol ~AI'P 1)} 
c 

~b I is a solution of 

( H o -  EoS) @1 = - ( H ' -  E,S)t~o 

or in component form 

( v -  Eo)~ + ~P)?1 = - e  ~A27o + E,~o 
o 

(5.1) 

(5.2) 

(5.3a) 

~ / ~  - 2m)~1 = - e ($-~r (5.3b) 
c 

Elimination of the "small component"  is possible which leads to 

e ~ 1 ,~ 
X1 = ~ t~a~o + ~mm trP~l (5.4a) 

e 
( T-~ V -  Eo)~1-4- ~ m c  [(~/~), (t~A)]+~o - EI~D 0 = 0 (5.4b) 

2 

E 2 :  2me-c(~Ol[(,~), (~f)]§ (5.5) 

The usual replacement is made as in (2.9) and one notes that 

(t~g)2 = ~2. (5.6) 

If  spin can be ignored, Eq. (5.4b) and (5.5) reduce to the well known equations 
of nonrelativistic theory. 

Note, however, that in the 4-component spinor formulation there is only a 
perturbation H '  linear in the field strength (while on 2-component spinor level 
we have a perturbat ion/ /1 linear in the field strength and another one/-/2 quadratic 
in it). So the "diamagnetic" and "paramagnetic" contributions are both formally 
expressible in terms of  H '  and ~bl. On 4-component spinor level there is a 
"diamagnetic contribution" to the 1st order wavefunction, namely the first term 
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on the r.h.s, of  (5.4a), which has no counterpart  in the theory of the "large 
components  only". 

Practically important  is double perturbation theory, e.g. with one fi~0 due to an 
external homogeneous field and another A due to a nuclear spin as in the theory 
of chemical shifts, or an A~ and an A~ both due to nuclear spins as in the theory 
of the indirect nuclear spin coupling. However  our main interest is in the 
second-order contribution to the interaction of an electron (bound in a Coulomb 
field) with the field of  a magnetic dipole. 

It is well-known that for .4 created by a point dipole the second term in (5.5) 
diverges [29-35]. In nonrelativistic theory the integrand behaves as r -~ at the 
origin, i.e. the integral diverges as In R (with R a cut-off parameter).  In the 
relativistic limit, depending on how one performs it, a In R or a R -~ divergence 
arises. With finite nuclear models finite results can be obtained, but the results 
appear  to be rather model dependent  and it is not easy to obtain physically 
meaningful 2nd order quantities. 

There are some observables of  0(/x 2) for which the divergent contributions cancel, 
such that finite results are obtained even for a point nucleus (like the "residual" 
Eq. (1) in [33]). This indicates that the perturbation series keeps some meaning 
in spite of it divergence, even beyond E~. 

The divergence of E2 sheds some doubt on the validity of 1st order perturbation 
theory. We shall show in the following subsections that the treatment of E~ has 
been allright in spite of  the divergence of  the series in powers of  tY. 

5.2. A model problem 

In order to understand the structure of  the non-relativistic wave functions of an 
atom in the presence of a magnetic point dipole we study an exactly solvable 
model problem that has the same kind of singularities, namely 

1 A Z 7 2 Z7  
/ - / = - 2  - 7  2r r 2 (5.7  

with the ground state wave function and energy 

q~ = exp {-Zr  - 7r-a}; E = -Z2/2.  (5.8) 

In (5.7, 8) atomic (Hartree) units are used. We see that q~ is equal to the 
eigenfunction exp {-Zr} for , /=  0, times a damping function 

g(r) = exp { - y / r }  (5.9) 

which bs close to 1 for large r and equal to 0 for r =0 .  In the limit y ~ 0  g(r)  = 1 
for r r 0 and g(r) = 0 for r = 0, very much like other damping functions considered 
in this paper.  So dg(r)/dr approaches 28(r) for 7 ~ 0 .  Note that g(r)  vanishes 
more strongly at r = 0 than any r k, i.e. that 

lim r-kg(r) = 0, for all k (5.10) 
r o 0  
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and that g(r) has an essential singularity at r =  0 and hence no power series 
expansion in r. An expansion of  g(r) in powers of 3' is formally possible 

dg 1 rdg 
. . . .  exp ( - y / r )  . . . .  (5.11a) 
dy r y dr 

d2 g 1 1 dg 
dy 2 r 2 e X p ( - y / r )  3' dr (5.11b) 

however these derivatives don' t  have a limit for 3' --> 0, not even in the distribution 
sense. A perturbation expansion of the wave function is hence not possible. If  
one tries it nevertheless one is likely to get invalid results. 

The perturbation corrections (in powers of  y) to the energy are, in view of  (5.8) 
very simple, namely 

Ek=0 ,  V k > 0 .  (5.12) 

"Naive"  evaluation of E1 leads to 

3,E1 = -Z3,(q~ol r-2l ~o)/(~Oo I ~Oo) = - 2  3,Z 3 (5.13) 

which is obviously wrong. This result is surprising since one should expect from 
the Hellmann-Feynman theorem that the "naive" expression for E1 agrees with 
limr_,o (aE/a3"). In the usual derivation of  the Hellmann-Feynman theorem 

a___E = Z <~IHI~> _ -<~IHI~) a/a3" <~ I ~>+<~ l ~) a/a3' <~IHI~> 
03' a3' <~I~> <~I~> ~ 

x o~ ~ 0H 

(5.14) 

one uses 

H e  = E~ (5.15a) 

<(p IHI~> = <H~ I ~> (5.15b) 

and assumes that the limit of (5.14) for 3 ' 0 0  exists. In the present example 
(5.15a) is certainly valid, while (5.15b), i.e. the hermiticity of H is not guaranteed, 
since both r and a~/a3" are singular at r = 0 .  In the limit 3 ' 0 0  ~o is regular, but 
O~o/a3" is singular, such that the turn-over-rule for /~ is only justified if the 
differentiations implicit in H are taken "in the distribution sense" (or equivalently 
the boundary terms are not ignored). This means that 

Ha~P: - H I ~  (5.16) 
03' r 
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differs from the  expression obtained in the "function sense" by an extra term 

2k r/q~ =-27r63(~)q~ = -8(r)r-2q~" (5.17) 

One must hence replace (5.15b) by 

and consequently (5.13) by 

7E,=ylim OE-= {< [(~o~~ }/ ~oa~ ~ ~o +2~r(~ola3(~)l~o) (~olWo) 

: 3,(,po[-~- 2~r63(Y)lq'o)/('r q'o) 

= - 2 Z  3 ~/J-  2Z 3 y = 0 (5.19) 

which is the correct result. I f  we want to evaluate yE1 as an expectation value 
with q~o we must do this with the operator 

= -Z--sT+ yZcr63(~ ") (5.20) ]/It-t1 
r 

i.e. with an extra &function term. 

If  we add this term to the Hamiltonian (5.7) i.e. if we write 

z r  
2 r 2r 2 ~5 ~2~rY83(~) (5.21) 

this has no effect on the wave function and energy (5.8), since r vanishes at 
r = 0. However this &function term is absolutely necessary if we want to evaluate 
E~ in the "naive" way, but nevertheless correctly. 

One gets, of  course, the same result (5.18-5.21) without worrying about distribu- 
tions if one evaluates the 1.h.s. of (5.18) in a pedestrian manner via two successive 
integrations by parts. 

5.3. Behaviour of the exact wave function for small r 

If  one looks at the perturbation created by the magnetic field of a point dipole 
somewhat closely, one realizes that this is - in spite of the small effect on the 
eigenvalue - by no means a small perturbation. In fact for r ~ 0 the unperturbed 
Hamiltonian is small compared to the perturbation. One must expect a drastic 
change of  the wave function for small r, but almost no effect for large r, like for 
the model problem in Sect. 5.2. 
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In principle one should try to find the exact solution of the Lrvy-Leblond equation 

for .,~ given by (2.14), or equivalently the 2nd order equation 

H o - E  ea ~ -e--e-Afi+e--s mc + 2--~c2 A2 J ~p = 0. (5.23) 

Even if we are not able to find the solution of  (5.22) or (5.23) in a closed 
non-perturbative way, we can formulate the behaviour of  the exact solution in 
the limit r ~ 0 .  In this limit all contributions 0(r ~ and 0(r -1) can be neglected 
and (5.22) reduces to 

Actually (5.24) is also the limit of  the Dirac equation for r ~  0. We insert (2.14) 
and note that [23] 

~(: • F) = - i(~/Y)(~7) + i/~Y (5.25) 

6"ff=-io.,( O--+l-~K~ (5.26) 
\Or r r ] 

K = f ( f f .  l + l ) ;  o-,=6"r o-2 =- 1. (5.27) 

Neglecting terms in 0(r -~) one can rewrite (5.24) as 

o_ ::)} -i~ [ Or c --y-o' ,  ~p=0 (5.28) 

and the same equation with p replaced by 2. 

A formal solution of (5.28) is 

f he{6tY tIF'~] 
: =e xp  ] , - T ~ - 7 -  o':~5-: j" (5.29) 

This is not yet a wave function, since it contains the spin-operator ~. A wave 
function ~o is obtained if we apply ~ to an arbitrary spin function, i.e. a constant 
two-component spinor. Obviously ~0 has an essential singularity at r = 0. Since 
the factor of r -~ in the exponent can have either sign, ~o may either vanish at 
r = 0 or become infinite. The first case arises for a repulsive interaction of  the 
electronic spin with the nuclear spin (~ "parallel" to/.~) the latter case for an 
attractive interaction (spins antiparallel). We shall need the first derivative of ~o 
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with respect to /x. Let us choose the quantization axis in the direction of/2,  i.e. 
/2 = (0, 0, ~) .  Then 

~ = exp l -  h e ( o - d x  o-r-~ (5.30a) 
t c \ r 

a,~ ~e{o-~ cos o~ 
(5.30b)  =-TkT r ) 

(with O the angle between/2 and ~). In the limit/x ~ 0 ,p becomes regular, while 
0q~/0/x has a singularity ~ r  -1. 

With this discussion of the behaviour of  the wave function for r ~ 0 we have 
given a partial answer to the question of the existence of bound state solutions 
for atoms with a magnetic point dipole. We have also clarified that a convergent 
expansion of ~ in powers of/x does not exist and that perturbation theory cannot 
converge. This holds for the Dirac equation and its non-relativistic limit, the 
L6vy-Leblond equation. 

5.4. Justification of Ist order perturbation theory 

Although the perturbation series diverges, the validity of 1st-order perturbation 
theory can be justified by means of the Hel lmann-Feynman theorem like in 
Sect. 5.2. Let us first consider the 2nd order equation (5.23), which is equivalent 
to (5.22), such that q~ has the same behaviour for r o  0. Since O~/ay is singular, 
we get a correction term to the Hel lmann-Feynman theorem. This is derived as 
in Sect. 5.2, see Eq. (5.16) to (5.18). In view of (5.30b) the g-function differs from 
that in (5.20) by a factor. The Hel lmann-Feynman theorem is hence valid if we 
add the following correction term to the Hamil tonian 

-/X~mc (o-z - o'r cos O ) A =l~mc(O---O-rCOSO)6(r)r-2 

~e 
--2mc(~d'--o'r/2~/r)~(r)r -2. (5.31) 

The isotropic part of (5.31) is exactly the Fermi-contact interaction. 

It looks as if we had now still another explanation of the FCI,  in addition to the 
two discussed previously, namely (1) point nucleus as a limit of finite nuclei, (2) 
limit of  the relativistic case for c ~ co. The new explanation (3) - correction term 
to the Hel lmann-Feynman theorem - has with the old one (1) much in common. 
Both are based on the fact ' that  the turn-over-rule for a hermitean operator,  when 
singular functions are involved, only holds if  the derivatives are taken "in the 
distribution sense". Alternatively one can say that the partial integrations on 
which the "turn-over-rule" is based, introduces "boundary  terms". 

We have started this paper  by pointing out that there is no g-function term if we 
use the L6vy-Leblond equation. We now show that for the L6vy-Leblond equation 
the "naive"  evaluation of E1 is justified. 
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We consider Eq. (5.14) but with ~ replaced by the 4-component spinor ~. The 
turn-over-rule holds automatically for the diagonal multiplicative operators in 
the Hamiltonian. So we must only show that for the differential operator the 
turn-over-rule is valid, i.e. that 

(5.32) 

(5.32) holds in fact for our example (with y replaced by/~) ,  because in view of 
(5.306) 

~-~]o - r x ~  o - - ~ o  r (5.33) 

and because 613 is a first-order differential operator. Differention in the distribution 
sense introduces at most terms in ~8(r) /r ,  which give no contribution to the 
integrals due to the factor r 2 from the volume element. (For the second-order 
equation (5.23) a correction term to the Hellmann-Feynman theorem arises 
because -1A is a second order differential operator). 

So we have finally justified the starting point of  Sect. 2. 

Note that the result of  this subsection also applies to the Dirac equation, i.e. that 
1st order perturbation theory within the Dirac theory is also justified without any 
additional ~-function term. 

5.5. How to evaluate higher order corrections 

While the question of the existence of solutions of  Eq. (5.23) and of their analytic 
behaviour, namely for r ~  0 is of  principal interest, the actual solution of (5.23) 
or the improvement of  the solutions beyond first-order perturbation theory is 
more like an academic problem (see, however, the last but one paragraph in 
Sect. 5.1). In fact contributions to the hyperfine interaction of  higher than first 
order in the nuclear magnetic moment of the nucleus are quantitatively of minor 
importancae [33]. Much more important are the quantum electrodynamic effects 
on the electronic g-factor and then the leading relativistic corrections. 

Perturbation theory to higher than first order is a delicate matter, at least for a 
point nucleus. There may be a chance to get finite results in perturbation theory, 
if one starts from a different unperturbed problem. We ~nay, e.g. choose a Ho 
like in Sect. 5.2 which has an eigenfunction that goes for small r like exp { - y / r }  
with y >  0. Then all integrals that arise in perturbation theory of  the type 
(~ol r-kilo) and that diverge for the conventional ~o will have finite values. This 
will still not make the perturbation series converge, but it may at least become 
asymptotic. 

6. Concluding remarks 

We have seen that the Fermi contact operator, which contains a "6-funct ion" is 
essentially an artifact due to the attempt to formulate the interaction of an electron 
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with the spin of a point nucleus by 1st order perturbation theory with a Pauliqike 
Hamiltonian. It does not arise in a non-perturbative formulation, and with the 
L6vy-Leblond equation not even in lst-order perturbation theory, strictly speaking 
there is no &term in the Hamiltonian, it appears only in certain matrix elements 
and there due to the fact that "boundary terms" of an integration by parts don't  
vanish. 

We have insisted on the fact that the interaction of the electron spin with the 
magnetic moment of the nucleus is not a relativistic effect. Some readers may 
have difficulties to appreciate this point. They may argue that the interaction 
between two electron spins is necessarily relativistic (to lowest order described 
by the Breit Hamiltonian) and that there should be no fundamental difference 
between the mechanisms of the interaction of various spins, even if the gyromag- 
netic ratio of the nuclear spin is not yet understood quantitatively. In fact, if one 
expresses the nuclear magnetic moment in terms of the nuclear magneton and 
the gyromagnetic ratio the final expression for the interaction energy contains a 
factor c -2 (or 2 )  which is typical for relativistic effects. 

The point is that in the theory of the interaction of two electron spins we must 
use a single theory, that describes both the generation of a magnetic field by one 
electron and the interaction of the other electron with this field. In the theory of 
the hyperfine splitting we have two independent theories, one (that we don't  
worry about here) for the origin of the magnetic moment of the nucleus, and 
one for interaction of the electron with an external field. We can also put it in 
this way: in the leading contribution of the interaction of an electron with an 
external magnetic field (of  the nucleus) the relativistic kinematics is not involved, 
only the existence of the spin and its gyromagnetic ratio, which are (except for 
QED corrections) correctly described in a Galilei-invariant theory [19]. 

In a theory of the motion of electrons with fixed nuclei it is legitimate to treat 
the magnetic moment of the nucleus as an external source, but to make no 
ad-hoc-assumptions about the electron spin. If  one does not even worry about 
the origin of the electron spin and the magnetic moment associated with it, then 
even the interaction of two electron spins can be described classically (both for 
the dipole and the contact part); only the factor c -2 in front of the spin-spin 
interaction suggests then that it vanishes the non-relativistic limit, and is hence 
a relativistic effect. 

A reader may also be puzzled by our insisting on the exact (non-perturbative) 
non-relativistic theory and in discriminating between expansion in powers of ]/2] 
(non-relativistic perturbation theory) and in powers of e -a (perturbation theory 
of relativistic effects). In a way/2 is proportional to c -1 and the above distinction 
may seem artificial. It is, however, consistent with the philosophy that the magnetic 
field of the nucleus is (like by the way also the electric field of the nucleus) 
regarded as an external field, the mechanism to which it is due does not matter. 
Moreover the exact non-relativistic theory is well-defined and the discussion of 
the analytic properties of  the exact non-relativistic wave functions is interesting. 
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This is also important for a better understanding of  the indirect coupling of two 
nuclear spins. 

The full theory requires, of course, the inclusion of relativistic corrections as well 
as of QED effects, but these are well understood, at least for the H-atom, and 
they are outside the scope of this paper. 

Acknowledgements. The author thanks W. H. E. Schwarz and V. Staemmler and two unknown referees 
for valuable comments. 

Appendix A 

The Lgvy-Leblond equation as non-relativistic limit of the Dirac equation 

We start from the Dirac equation 

c@ V_  E_2mc2] \X]  =0. (A.1) 

We limit our interest to electronic states which have a non-relativistic limit, i.e. 
we discard both positronic and ultrarelativistic electronic solutions. Then IxI is 
smaller than [r by roughly a factor c -1. We replace X by 

.~ = cX (A.2) 

such that )~ and r are of comparable magnitude. Then (A.1) becomes 

The non-relativistic limit is then easily obtained by letting c in (A.3) go to oo. 
The result is the L6vy-Leblond equation [19] 

 a4, 
~/~ - 2 m  

that is non-relativistic, but still describes a spin-(I/2) particle, with 4-component 
spinor wave functions. 

In the absence of a magnetic field, the "small" component ~ (which is, strictly 
speaking, not small compared to r  can easily be eliminated. Solving for ~, i.e. 

~rp 
2 =~mm ~ (A.5) 

and insertion of (A.5) into the first line of (A.4) yields the ordinary Schr6dinger 
equation 

{ V +  ( 6 " f i ) 2 / ( 2 m )  - E}r  = O. (A.6) 

In the presence of a magnetic field (with/~ replaced by ~?) its interaction with 
the electron spin is correctly described (including the gyromagnetic ratio 2). 
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The original derivation [19] of the L6vy-Leblond equation, unlike the one given 
here, does not start from the Dirac equation, but results from formulating a 
Galilei-invariant field theory for spin-(I/2) particles. 

Appendix B 

Distributions and the turn-over-rule 

We review here what one needs to know of the theory of distributions [25] in 
order to understand when and why 8-terms arise. We start with a few remarks 
on one-dimensional distributions. The "generalized functions" of  Lighthill [26], 
whom we follow here, are a special class of distributions, that in the general 
theory are referred to as "tempered distributions'. A "good functions" is, by 
definition, differentiable an infinite number of times and satisfies 

onf=f( 'O=O{[xI-N},VN>O f o r x ~ o o ,  n = 0 ,  1 , 2 , . . . .  (B.1) 
Ox n 

A "regular" sequence f i (x ) ;  k = 0, 1 , . . .  co (the index may also be continuous) 
of "good functions" defines a distribution f, if the limit  efI2 

f ( x ) F ( x )  dx = lim fk (x)F(x)  dx (B.2) 
k ~ o o  

exists for all good functions F(x). It is not required that the limit fo~ of the 
sequence of functions exists, in particular the limit need not itself be a "good 
function". 

The sequence 

f . ( x )  = e -xV'~2 (B.3) 

converges (for n -  co) to the function f ( x )  = 1 (which is not a good function), 
while the sequence 

f~(x) = ~ / n  e_.X2 (B.4) V '/7" 
has no limit as a function. However 

f~co def f--~176 ~3(x)F(x) dx = lira f~(x)F(x)  dx = F(0) (B.5) 
rl --~ o o  

defines the &distribution. 

In view of the properties of good functions, partial integration is always possible, 
without a boundary contribution 

f ' , (x )F(x)  dx = f , ( x ) F ( x ) [ _ ~ -  f ,  tx)F'(x)  dx 
o o  
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define the derivative of  a distribution without a need for 

Hence 

d 
~x (sgn x) = 23(x). (B.12) 

We are especially interested in distributions in three dimensions, in particular 
those thht correspond to the functions r -k and their gradients (see also [21]). 

Let us first construct Vr -k by the three-dimensional generalization of  (B.7). We 
hence evaluate 

I= f (Vr-k)F(~) dr=- f r-k[VF(~)]  dr. (B.13) 

One can therefore 
studying the sequence which defines it, namely via 

f f'(x)F(x) &---- f f(x)F'(x) dx (B.7) 

e.g. one can define 3'(x) via 

I ~'(x)F(x) dx =-F'(0). (B.8) 

In view of  (B.6) the operator -i(d/dx) (with differentiation understood in the 
distribution sense) is hermitean for f a distribution and F a good function. 

If(x) I--~xidlF(x))=fF(x)I-~xid[f(x)) *" (B.9) 

If  the sequence f,(x) of "good functions" that defines a distribution f(x) has a 
continuous limit fo~(x) in the function sense, we say that the distribution f(x) is 
equal to the function foo(x). If  furthermore fo~(x) is differentiable everywhere and 
has a continuous first derivative, then the first derivative o f f ( x )  in the distribution 
sense agrees with its counterpart  in the traditional sense. It may, however, happen 
that f(x) =fo~(x), but that fo~(x) is discontinuous for some x, e.g. x = 0, or that 
f~(x) has a discontinuous first derivative. An example for the first case is the 
sign function 

! 1  f o r x > 0  

sgn (x) = for x = 0 (B.10) 

1 for x <0.  

From (B.6) we easily get 

o~ d 
I_ -~x(Sgnx)F(x) dx=- f~_ sgnxF'(x) dx 

L = F'(x) dx- F'(x) dx=2F(O). (B.11) 
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It is appropriate to choose the good function F(~) vector valued and to interpret 
the product in (B.13) as a dot product such that ! becomes a scalar. A convenient 
choice of F(~) is then 

F(F) = ~/3(r) (B.14) 

with/3(r)  a scalar good function. Then, noting that 

i0 F(r)a(r) dr=-~ F([rl)a(r) dr= F(O) (B.15) 

we get 

I = -  f r-kV[FF(r)]dr=-3 f r-kF(r) d r -  f r-k+lff;'(r) dr 

to Io = -12rr r-k+2/3(r) dr-4rr r-k+3/3'(r) dr 

;0 o =-12~r  r-k§ dr-4~'r-k+3F(r)lo+4~r(-k+3) r-k+2/~(r) dr 
o 

= - 4 ~ k  r-k+2F'(r) dr-8~ r-k+31~(r)a(r) dr (B.16) 
o 

and we conclude that 

V r -k = -kfr -k-2 + 2Fr-k-'a (r) (B.17) 

since insertion of the r.h.s, of (B.17) into (B.13) yields (B.16). 

The a-term in (B.17) results from the boundary term of an integration by parts. 
This clearly indicates that the operator iV is, if singular functions are involved, 
in view of (B.13) only hermitean if the derivatives are taken in the distribution 
sense. 

There is an alternative way to arrive at (B.17), namely by considering the sequence 
f~(r) which defines the distribution r -k 

f~(r) = r-kg.(r); gn(r) = 1 --exp (--nr m) (B.18) 

with m -> k - 1. Then 

Vf, (r) = -kFr-k-2 gn(r) + ~r -k-1 dg(r) (B.19) 
dr 

noting that for n-+oo, g, approaches 1 (except at r=O, where g ( r )=0) ,  and 
dgn(r)/dr approaches the a-distribution, (B.19) leads to (B.17). To see that 
dgn(r)/dr defines the a-functions we note (B.15) and that 

f o  g~rr) F(r) f ~ dgn(r) dr= F(O) !i+rn d dr = F(0) !i+na .Io dr 

io o = 2 a( r )F( r )  dr. (B.20) 

(The factor 2 arise because we integrate from 0 to 0% rather than from -oe to oo). 
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For k-- 1, the &term, though present in (B.19) does not contribute to the integral 
(B.16), since it vanishes. It becomes important mainly for k = 3 (see Appendix C). 

Note finally that taking the divergence of (B.17) yields 

~7 �9 V r  - k  = k ( k -  1 ) r - k - 2 - - g ( k - -  l ) r - k - l t $ ( r ) q - 2 r - k a ' ( r )  (B.21) 

especially for k = 1 

Ar -1 = 2r-18'(r) (B.22) 

In view of 

Io ~ fo 2r-la'(r)F(r) dr = 8rr a'(r)rff~(r) dr 

= -8~" ~(r){P(r)r+F(r)} dr= -4~-~(0) 

= - f/3(r)a3(~) de (B.23) 

we can rewrite (B.21) as 

Ar -1 = -4~ra3(~); a3(~) = a(x)a(y)8(z) (B.24) 

with aa(F) the three-dimensional &function. (B.24) is probably the best known 
relation that involves a3(~). 

Let us finally note another property of tempered distributions as defined in this 
section. Their Fourier transform (in the distribution sense) always exists and is 
invertible. This allows one e.g. to evaluate Vf(r) in the distribution sense by first 
constructing the three dimensional Fourier transformation g(p), then multiplying 
g(p) by ip (or by 2trip depending on how one defines the Fourier transformation) 
and transforming back ipg(p). 

Appendix C 

The field strengths of an electric monopole and a magnetic dipole 

The potential ~b(F) created by a charge distribution 0(~) satisfies the Poisson 
equation 

A~b -- -4~r 0. (C.1) 

If  one chooses a sequence Qn of charge distributions that define (see appendix 
B) the distribution a3(?), then in the limit n-+ oo ~b approaches the distribution 
1/r which is equal to the function 1/r. Although 1/r is singular at r = 0 this does 
not matter for its expectation values, since it only appears in integrals multiplied 
by r 2 from the volume element. 

The electric field strength corresponding to a point charge is according to (B.17) 

E = -g rad  1 = 7 - 2 7 a ( r )  (C.2) 
r 
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However the 2nd term in (C.2) can usually be ignored since its expectation value 
vanishes in view of ~6(r)=~). 

Multiplication of 1/r by a damping factor g(r) like (B.18) amounts to "spreading 
out" the point charge 

A { l g ( r ) }  - l r  d2g--4crQ(r)dr 2 (C.3) 

The vector potential created by a magnetic point dipole satisfies the Poisson 
equation 

AA = 4 r r f =  4rrfi xVa(g) (C.4) 
C C 

Since f is a distribution, A must be a distribution as well, although, like 4~, it is 
equal to a function 

r3 (C.5) 

According to the rule of appendix B we get 

/xr 
/~=rot  f i x  g r  3 _ r 3f 3(fig)gr~ +- t x - 7>3(r)  (C.6) 

4~ ' f=  div/~ = - -~6 ( r )  (c.7) 

which agrees with (C.4), if we note that 

2,7T~3(~ ) = a(r__~)= 6'(r) (C.8) 
r 2 r 

That all quantities in this appendix 0, 4', /~, f,  A and /~ must be interpreted in 
the distribution sense is obvious, if one realizes that in reality there are no point 
charges or point dipoles and the point limit of extended charge contributions is 
only taken under integral signs and is meaningless otherwise. It turns out, however 
that for 4' and e{ (not/~ and/3)  the limits exist even in the function sense, i.e. 
that if one uses r and A only, one need not introduce distributions, unless one 
has to differentiate 4' or A. 

One should mention that the wave functions of quantum mechanics are not "good 
functions" in the strict sense, since they may have discontinuous first derivations 
for r = 0. However that has hardly an effect on the applicability of the theory of 
distributions. 
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